Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.570
Filtrar
1.
J Am Chem Soc ; 146(13): 8865-8876, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470125

RESUMO

Formate is a major reactive carbon species in one-carbon metabolism, where it serves as an endogenous precursor for amino acid and nucleic acid biosynthesis and a cellular source of NAD(P)H. On the other hand, aberrant elevations in cellular formate are connected to progression of serious diseases, including cancer and Alzheimer's disease. Traditional methods for formate detection in biological environments often rely on sample destruction or extensive processing, resulting in a loss of spatiotemporal information. To help address these limitations, here we present the design, synthesis, and biological evaluation of a first-generation activity-based sensing system for live-cell formate imaging that relies on iridium-mediated transfer hydrogenation chemistry. Formate facilitates an aldehyde-to-alcohol conversion on various fluorophore scaffolds to enable fluorescence detection of this one-carbon unit, including through a two-color ratiometric response with internal calibration. The resulting two-component probe system can detect changes in formate levels in living cells with a high selectivity over potentially competing biological analytes. Moreover, this activity-based sensing system can visualize changes in endogenous formate fluxes through alterations of one-carbon pathways in cell-based models of human colon cancer, presaging the potential utility of this chemical approach to probe the continuum between one-carbon metabolism and signaling in cancer and other diseases.


Assuntos
NAD , Neoplasias , Humanos , Hidrogenação , NAD/metabolismo , Carbono , Formiatos/química
2.
Bioresour Technol ; 393: 130027, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37977496

RESUMO

Bioconversion of CO2 to high-valuable products is a globally pursued sustainable technology for carbon neutrality. However, low CO2 activation with formate dehydrogenase (FDH) remains a major challenge for further upcycling due to the poor CO2 affinity, reduction activity and stability of currently used FDHs. Here, we present two recombined mutants, ΔFDHPa48 and ΔFDHPa4814, which exhibit high CO2 reduction activity and antioxidative activity. Compared to FDHPa, the reduction activity of ΔFDHPa48 was increased up to 743 % and the yield in the reduction of CO2 to methanol was increased by 3.16-fold. Molecular dynamics identified that increasing the width of the substrate pocket of ΔFDHPa48 could improve the enzyme reduction activity. Meanwhile, the enhanced rigidity of C-terminal residues effectively protected the active center. These results fundamentally advanced our understanding of the CO2 activation process and efficient FDH for enzymatic CO2 activation and conversion.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Dióxido de Carbono/metabolismo , Formiato Desidrogenases/genética , NAD/metabolismo , NADH Desidrogenase , Oxirredução , Formiatos/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-38029665

RESUMO

Diabetic kidney disease (DKD), a common microvascular complication of diabetes, currently lacks specific diagnostic indicators and therapeutic targets, resulting in miss of early intervention. To profile metabolic conditions in complex and precious biological samples and screen potential biomarkers for DKD diagnosis and prognosis, a rapid, convenient and reliable quantification method for carboxyl compounds by gas chromatography-mass spectrometry (GC-MS) was established with isobutyl chloroformate derivatization. The derivatives were extracted with hexane, injected into GC-MS and quantified with selected ion monitoring mode. This method showed excellent linearity(R2 > 0.99), good recoveries (81.1%-115.5%), good repeatability (RSD < 20%) and sensitivity (LODs: 0.20-499.90 pg, LOQs: 2.00-1007.00 pg). Among the 37 carboxyl compounds analyzed, 12 metabolites in short-chain fatty acids (SCFAs) metabolism pathway and amino acid metabolism pathway were linked with DKD development and among them, 6 metabolites were associated with both development and prognosis of DKD in mice. In conclusion, a reliable, convenient and sensitive method based on isobutyl chloroformate derivatization and GC-MS analysis is established and successfully applied to quantify 37 carboxyl compounds in biological samples of mice and 12 potential biomarkers for DKD development and prognosis are screened.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nefropatias Diabéticas/diagnóstico , Formiatos/química , Biomarcadores
4.
Phys Rev Lett ; 130(23): 233001, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354420

RESUMO

We investigate the intermolecular nonradiative charge transfer process in a double hydrogen-bonded formic acid (FA) dimer, initiated by electron-collision induced double ionization of one FA molecule. Through fragment ions and electron coincident momentum measurements and ab initio calculations, we obtain direct evidence that electron transfer from the neighboring FA molecule to fill one of the two vacancies occurs by a potential energy curve crossing of FA^{++}+FA with FA^{+}+FA^{+*} curves, forming an electronic excited state of dicationic dimers. This process causes the breaking of two hydrogen bonds and subsequently the cleavage of C─H and C─O covalent bonds in the dimers, which is expected to be a general phenomenon occurring in molecular complexes and can have important implications for radiation damage to biological matter.


Assuntos
Formiatos , Formiatos/química , Íons
5.
Adv Sci (Weinh) ; 10(20): e2300752, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37162224

RESUMO

Promoting the activity of biological enzymes under in vitro environment is a promising technique for bioelectrocatalytic reactions, such as the conversion of carbon dioxide (CO2 ) into valuable chemicals, which is a promising strategy to address the environmental issue of CO2 in the atmosphere; however, this technique remains challenging. Herein, a nanocage structure for enzyme confinement is synthesized to enable the in situ encapsulation of formate dehydrogenase (FDH) in a porous metal-organic framework, which acts as a coenzyme and boosts the hybrid synergistic catalysis using enzymes. This study reveals that the synthesized FDH@ZIF-8 nanocage-structured hybrid (CSH) catalyst exhibits an improved catalytic ability of the enzymes and increases the hydrophobicity of the electrode and its affinity to CO2 . Thus, CSH can trap CO2 and control its microenvironments. The CSH catalyst boosts the conversion rate of CO2 to formic acid (HCOOH) to 28 times higher than that when using pure FDH. The in situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) spectra indicates that OCHO* is the key intermediate. Density functional theory (DFT) calculations show that CSH has extremely low overpotential and is particularly effective for producing formate. This protection architecture for enzymes considerably promotes their biological application under in vitro environments.


Assuntos
Dióxido de Carbono , Formiatos , Dióxido de Carbono/química , Catálise , Formiatos/química , Formiato Desidrogenases/química
6.
Biochim Biophys Acta Bioenerg ; 1864(1): 148919, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152681

RESUMO

Formate hydrogenlyase-1 (FHL-1) is a complex-I-like enzyme that is commonly found in gram-negative bacteria. The enzyme comprises a peripheral arm and a membrane arm but is not involved in quinone reduction. Instead, FHL-1 couples formate oxidation to the reduction of protons to molecular hydrogen (H2). Escherichia coli produces FHL-1 under fermentative conditions where it serves to detoxify formic acid in the environment. The membrane biology and bioenergetics surrounding E. coli FHL-1 have long held fascination. Here, we review recent work on understanding the molecular basis of formic acid efflux and influx. We also consider the structure and function of E. coli FHL-1, its relationship with formate transport, and pay particular attention to the molecular interface between the peripheral arm and the membrane arm. Finally, we highlight the interesting phenotype of genetic mutation of the ND1 Loop, which is located at that interface.


Assuntos
Escherichia coli , Formiato Desidrogenases , Formiatos , Fermentação , Formiato Desidrogenases/química , Formiatos/química , Hidrogênio
7.
Angew Chem Int Ed Engl ; 62(6): e202212224, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36465058

RESUMO

Metal-based formate dehydrogenases are molybdenum or tungsten-dependent enzymes that catalyze the interconversion between formate and CO2 . According to the current consensus, the metal ion of the catalytic center in its active form is coordinated by 6 S (or 5 S and 1 Se) atoms, leaving no free coordination sites to which formate could bind to the metal. Some authors have proposed that one of the active site ligands decoordinates during turnover to allow formate binding. Another proposal is that the oxidation of formate takes place in the second coordination sphere of the metal. Here, we have used electrochemical steady-state kinetics to elucidate the order of the steps in the catalytic cycle of two formate dehydrogenases. Our results strongly support the "second coordination sphere" hypothesis.


Assuntos
Formiato Desidrogenases , Molibdênio , Formiato Desidrogenases/metabolismo , Molibdênio/química , Domínio Catalítico , Formiatos/química , Oxirredução , Cinética
8.
Molecules ; 27(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36364197

RESUMO

To reveal the nature of CO2 reduction to formate with high efficiency by in situ hydrogen produced from hydrothermal reactions with iron, DFT calculations were used. A reaction pathway was proposed in which the formate was produced through the key intermediate species, namely iron hydride, produced in situ in the process of hydrogen gas production. In the in situ hydrogenation of CO2, the charge of H in the iron hydride was -0.135, and the Fe-H bond distance was approximately 1.537 Å. A C-H bond was formed as a transition state during the attack of Hδ- on Cδ+. Finally, a HCOO species was formed. The distance of the C-H bond was 1.107 Å. The calculated free energy barrier was 16.43 kcal/mol. This study may provide new insight into CO2 reduction to formate in hydrothermal reactions with metal.


Assuntos
Hidrogênio , Ferro , Hidrogênio/química , Ferro/química , Dióxido de Carbono/química , Formiatos/química
9.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364257

RESUMO

With several major polarity and weak optical properties, the sensitive detection of HCOOH remains a major challenge. Given the special role of HCOOH in assisting in the catalytic hydrogenation process of Ir complexes, HCOOH (as a hydrogen source) could rapidly activate Ir complexes as catalysts and further reduce the substrates. This work developed a facile and sensitive HCOOH fluorescence sensor utilizing an optimal catalytic fluorescence generation system, which consists of the phenyl-pyrazole-type Ir-complex PP-Ir-Cl and the coumarin-type fluorescence probe P-coumarin. The sensor demonstrates excellent sensitivity and specificity for HCOOH and formates; the limits of detection for HCOOH, HCOONa, and HCOOEt3N were tested to be 50.6 ppb, 68.0 ppb, and 146.0 ppb, respectively. Compared to previous methods, the proposed sensor exhibits good detection accuracy and excellent sensitivity. Therefore, the proposed HCOOH sensor could be used as a new detection method for HCOOH and could provide a new design path for other sensors.


Assuntos
Formiatos , Hidrogênio , Hidrogênio/química , Fluorescência , Catálise , Formiatos/química , Cumarínicos
10.
Angew Chem Int Ed Engl ; 61(48): e202213930, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36194372

RESUMO

On-site hydrogen peroxide production through electrocatalytic and photocatalytic oxygen reduction reactions has recently attracted broad research interest. However, practical applications have thus far been plagued by the low activity and the requirement of complex equipment. Here, inspired by the process of biological hydrogen peroxide synthesis catalyzed by enzymes, we report a Pt-Au alloy to mimic the catalytic function of natural formate oxidase for hydrogen peroxide synthesis through aerobic oxidation of formic acid. The mass activity of the Pt-Au alloy is three times higher than that of formate oxidase. Density functional theory calculations revealed that the efficient dehydrogenation of formic acid and the high selectivity of the subsequent reduction of oxygen to hydrogen peroxide account for the high hydrogen peroxide productivity. In addition, the formic acid aqueous solution provides an acidic environment, which is conducive to the utilization of the in situ generated hydrogen peroxide for oxidation reactions, including C-H bond oxidation and sterilization.


Assuntos
Peróxido de Hidrogênio , Platina , Platina/química , Ligas de Ouro , Formiatos/química , Oxirredução , Ligas/química , Oxirredutases , Oxigênio
11.
Phys Chem Chem Phys ; 24(40): 24748-24758, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36196917

RESUMO

Halide-formic acid complexes have been studied utilising a combined experimental and theoretical approach. Formic acid exists as two conformers, distinguished by the relative rotation about the C-OH bond. Computational investigation of the formic acid isomerisation reaction between the two conformers has revealed the ability of halide anions to catalyse the formation of, and preferentially stabilise, the higher energy conformer. Anion photoelectron spectroscopy has been used to study the halide-formic acid complexes, with the experimental vertical detachment energies compared with simulated photodetachment energies with respect to halide complexes with both formic acid conformers. The existence of experimental spectral features associated with halide complexes of the higher energy formic acid confomer confirms in situ generation, likely as a result of the halide mediated catalytic formation.


Assuntos
Formiatos , Formiatos/química , Espectroscopia Fotoeletrônica , Ânions/química , Catálise
12.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080185

RESUMO

Dimethyl carbonate is a generally used chemical substance which is environmentally sustainable in nature and used in a range of industrial applications as intermediate. Although various methods, including methanol phosgenation, transesterification and oxidative carbonylation of methanol, have been developed for large-scale industrial production of DMC, they are expensive, unsafe and use noxious raw materials. Green production of DMC from CO2 and methanol is the most appropriate and eco-friendly method. Numerous catalysts were studied and tested in this regard. The issues of low yield and difficulty in tests have not been resolved fundamentally, which is caused by the inherent problems of the synthetic pathway and limitations imposed by thermodynamics. Electron-assisted activation of CO2 and membrane reactors which can separate products in real-time giving a maximum yield of DMC are also being used in the quest to find more effective production method. In this review paper, we deeply addressed green production methods of DMC using Zr/Ce/Cu-based nanocomposites as catalysts. Moreover, the relationship between the structure and activity of catalysts, catalytic mechanisms, molecular activation and active sites identification of catalysts are also discussed.


Assuntos
Dióxido de Carbono , Metanol , Dióxido de Carbono/química , Formiatos/química , Metanol/química , Óxidos
13.
Molecules ; 27(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144724

RESUMO

Formate dehydrogenases (FDH) reversibly catalyze the interconversion of CO2 to formate. They belong to the family of molybdenum and tungsten-dependent oxidoreductases. For several decades, scientists have been synthesizing structural and functional model complexes inspired by these enzymes. These studies not only allow for finding certain efficient catalysts but also in some cases to better understand the functioning of the enzymes. However, FDH models for catalytic CO2 reduction are less studied compared to the oxygen atom transfer (OAT) reaction. Herein, we present recent results of structural and functional models of FDH.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Dióxido de Carbono/química , Formiato Desidrogenases/metabolismo , Formiatos/química , Molibdênio/química , Oxirredução , Oxigênio , Tungstênio/química
14.
Nature ; 607(7919): 499-506, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859199

RESUMO

Transition metal hydrides (M-H) are ubiquitous intermediates in a wide range of enzymatic processes and catalytic reactions, playing a central role in H+/H2 interconversion1, the reduction of CO2 to formic acid (HCOOH)2 and in hydrogenation reactions. The facile formation of M-H is a critical challenge to address to further improve the energy efficiency of these reactions. Specifically, the easy electrochemical generation of M-H using mild proton sources is key to enable high selectivity versus competitive CO and H2 formation in the CO2 electroreduction to HCOOH, the highest value-added CO2 reduction product3. Here we introduce a strategy for electrocatalytic M-H generation using concerted proton-electron transfer (CPET) mediators. As a proof of principle, the combination of a series of CPET mediators with the CO2 electroreduction catalyst [MnI(bpy)(CO)3Br] (bpy = 2,2'-bipyridine) was investigated, probing the reversal of the product selectivity from CO to HCOOH to evaluate the efficiency of the manganese hydride (Mn-H) generation step. We demonstrate the formation of the Mn-H species by in situ spectroscopic techniques and determine the thermodynamic boundary conditions for this mechanism to occur. A synthetic iron-sulfur cluster is identified as the best CPET mediator for the system, enabling the preparation of a benchmark catalytic system for HCOOH generation.


Assuntos
Catálise , Complexos de Coordenação , Eletroquímica , Transporte de Elétrons , Prótons , Dióxido de Carbono/química , Monóxido de Carbono/química , Complexos de Coordenação/química , Elétrons , Formiatos/química , Ferro/química , Oxirredução , Enxofre/química , Termodinâmica
15.
J Inorg Biochem ; 234: 111903, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35780763

RESUMO

The enzyme, Formate Dehydrogenase, is biological catalyst responsible for the hydrogenation of carbon dioxide to formic acid. The present research has discovered CO2 reduction activities and their application using certain metal containing (Mo- or W-)/ NAD + -linked Formate Dehydrogenases. However, the enzyme must be immobilized for easy separation, increased stability and reusability. The shortcomings associated with conventional immobilization method include leaching, mass transfer limitation and low activity. We here present a perspective, wherein, we assess the efficacy of soft-oxometalates and macrocycles as a promising alternative to Formate Dehydrogenase immobilization. The mechanistic pathway and stability of Formate Dehydrogenase from different sources are discussed and compared with their tailored 'chemical counterparts' soft-oxometalates and macrocycles based systems such as {Mo132}, {Mo154}, {MoV9}, Co and Mn based Corroles. The structure, properties and mechanism of CO2 reduction by different Soft-oxometalates and metal based macrocycles were found to be synonymous with that of metal based Formate Dehydrogenase. We comprehensively summarize different reported approaches to valorize CO2 to C1 and C2 products such as photochemical, electrochemical and systems chemistry to showcase our efforts in the ongoing pursuit of CO2 valorization, inspired by the workings of such enzymes, alongside the efforts of several other leading groups. The revelatory insights in the perspective could be used not only for developing bio-inspired CO2 Reduction Reaction but also constructing artificial cell automata for artificial life like system.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Ânions , Dióxido de Carbono/metabolismo , Catálise , Formiato Desidrogenases/química , Formiatos/química , Oxirredução , Polieletrólitos
16.
J Am Chem Soc ; 144(35): 16006-16011, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35905476

RESUMO

Formic acid (HCOOH) can be exclusively prepared through CO2 electroreduction at an industrial current density (0.5 A cm-2). However, the global annual demand for formic acid is only ∼1 million tons, far less than the current CO2 emission scale. The exploration of an economical and green approach to upgrading CO2-derived formic acid is significant. Here, we report an electrochemical process to convert formic acid and nitrite into high-valued formamide over a copper catalyst under ambient conditions, which offers the selectivity from formic acid to formamide up to 90.0%. Isotope-labeled in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy and quasi in situ electron paramagnetic resonance results reveal the key C-N bond formation through coupling *CHO and *NH2 intermediates. This work offers an electrochemical strategy to upgrade CO2-derived formic acid into high-value formamide.


Assuntos
Dióxido de Carbono , Nitritos , Dióxido de Carbono/química , Formamidas , Formiatos/química
17.
Nano Lett ; 22(15): 6298-6305, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35881079

RESUMO

The electrocatalytic generation of valuable fuels and chemicals from carbon dioxide (CO2) and others with the assistance of clean solar energy is a highly promising way to realize the carbon-neutral cycle, which invokes the systematic development of advanced electrocatalysts for efficient and selective redox reactions of feedstocks. Herein, we demonstrate the interface modification of cuprous oxide with polyvinylpyrrolidone (PVP) to improve the electrocatalytic efficiency for the synchronous formate generation. Density functional theory calculations reveal that the interfacial properties can be effectively regulated by the PVP functionalization for the favorable formation of intermediates to improve the selectivity of formate generation. Importantly, the advanced electrocatalyts enable an efficient coupling of CO2 reduction with methanol oxidation in an electrochemical cell powered with a solar cell. The work provides a predictive link between the electrocatalytic redox reactions by applying the interfacial regulation strategies of electrocatalysts.


Assuntos
Dióxido de Carbono , Energia Solar , Dióxido de Carbono/química , Formiatos/química , Oxirredução
18.
J Phys Chem A ; 126(28): 4608-4616, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35796534

RESUMO

The binary molecular complexes formed between the aromatic heterocycles furan and thiophene with formic acid were investigated using pulsed-jet Fourier transform microwave spectroscopy and quantum chemical computations. For both of the complexes, rotational spectra of the lowest energy isomer were detected and assigned. Rotational spectroscopic results and density functional theory calculations support that the preferred conformation of the furan-formic acid complex is characterized by a relatively strong O-H···O and a weak C-H···O hydrogen bonds while the O-H···π and C-H···O hydrogen bonds stabilize the thiophene-formic acid complex. Natural bond orbital analysis further proves the experimental observation, suggesting that the strength of the O-H···O(furan) interaction is about two times stronger than that of O-H···π(thiophene). The symmetry adapted perturbation theory analysis reveals that electrostatic interaction is dominant in stabilizing the two complexes and that dispersion becomes significant in the thiophene-formic acid complex compared to furan-formic acid.


Assuntos
Ácidos Carboxílicos , Tiofenos , Formiatos/química , Furanos/química , Espectroscopia de Ressonância Magnética , Tiofenos/química
19.
Chemistry ; 28(54): e202201091, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35662280

RESUMO

Biological carbon dioxide (CO2 ) reduction is an important step by which organisms form valuable energy-richer molecules required for further metabolic processes. The Mo-dependent formate dehydrogenase (FDH) from Rhodobacter capsulatus catalyzes reversible formate oxidation to CO2 at a bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor. To elucidate potential substrate binding sites relevant for the mechanism, we studied herein the interaction with the inhibitory molecules azide and cyanate, which are isoelectronic to CO2 and charged as formate. We employed infrared (IR) spectroscopy in combination with density functional theory (DFT) and inhibition kinetics. One distinct inhibitory molecule was found to bind to either a non-competitive or a competitive binding site in the secondary coordination sphere of the active site. Site-directed mutagenesis of key amino acid residues in the vicinity of the bis-MGD cofactor revealed changes in both non-competitive and competitive binding, whereby the inhibitor is in case of the latter interaction presumably bound between the cofactor and the adjacent Arg587.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Aminoácidos/metabolismo , Azidas , Sítios de Ligação , Dióxido de Carbono/química , Cianatos , Formiato Desidrogenases/química , Formiatos/química , Oxirredução
20.
J Phys Chem Lett ; 13(19): 4272-4279, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35522820

RESUMO

Hydrogen bonds are ubiquitous in nature and of fundamental importance to the chemical and physical properties of molecular systems in the condensed phase. Nevertheless, our understanding of the structural and dynamical properties of hydrogen-bonded complexes in particular in electronic excited states remains very incomplete. Here, by using formic acid (FA) dimer as a prototype of DNA base pair, we investigate the ultrafast decay process initiated by removal of an electron from the inner-valence shell of the molecule upon electron-beam irradiation. Through fragment-ion and electron coincident momentum measurements and ab initio calculations, we find that de-excitation of an outer-valence electron at the same site can initiate ultrafast energy transfer to the neighboring molecule, which is in turn ionized through the emission of low-energy electrons. Our study reveals a concerted breaking of double hydrogen-bond in the dimer initiated by the ultrafast molecular rotations of two FA+ cations following this nonlocal decay mechanism.


Assuntos
Elétrons , Formiatos , Formiatos/química , Hidrogênio , Ligação de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...